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Hybrid lattice Boltzmann simulations

D. Marenduzzo,1 E. Orlandini,2 M. E. Cates,1 and J. M. Yeomans®
ISUPA, School of Physics, University of Edinburgh, Mayfield Road, Edinburgh EH9 3JZ, Scotland
2Dipartimento di Fisica and Sezione INFN, Universita di Padova, Via Marzolo 8, 35131 Padova, Italy
3The Rudolf Peierls Centre for Theoretical Physics, 1 Keble Road, Oxford OX1 3NP, England
(Received 16 February 2007; published 24 September 2007)

We report hybrid lattice Boltzmann (HLB) simulations of the hydrodynamics of an active nematic liquid
crystal sandwiched between confining walls with various anchoring conditions. We confirm the existence of a
transition between a passive phase and an active phase, in which there is spontaneous flow in the steady state.
This transition is attained for sufficiently “extensile” rods, in the case of flow-aligning liquid crystals, and for
sufficiently “contractile” ones for flow-tumbling materials. In a quasi-one-dimensional geometry, deep in the
active phase of flow-aligning materials, our simulations give evidence of hysteresis and history-dependent
steady states, as well as of spontaneous banded flow. Flow-tumbling materials, in contrast, rearrange them-
selves so that only the two boundary layers flow in steady state. Two-dimensional simulations, with periodic
boundary conditions, show additional instabilities, with the spontaneous flow appearing as patterns made up of
“convection rolls.” These results demonstrate a remarkable richness (including dependence on anchoring
conditions) in the steady-state phase behavior of active materials, even in the absence of external forcing; they
have no counterpart for passive nematics. Our HLB methodology, which combines lattice Boltzmann for
momentum transport with a finite difference scheme for the order parameter dynamics, offers a robust and

efficient method for probing the complex hydrodynamic behavior of active nematics.
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I. INTRODUCTION

Active viscoelastic gels such as suspensions of active par-
ticles and active liquid crystals are soft materials receiving
increasing theoretical and experimental attention [1-20].
Such materials are called “active” [21] because they continu-
ously burn energy, for example, in the form of adenosine
tri-phosphate (ATP), and this drives them out of thermody-
namic equilibrium even when there is no external force. Ac-
tivity imparts nontrivial physical properties. Perhaps the
most striking is that spontaneous flow can exist in nondriven
active materials [1-7], in sharp contrast to their passive lig-
uid crystalline counterparts. Thus such materials, while al-
ways remaining active in a microscopic sense, can undergo a
phase transition from a passive phase (where activity is mac-
roscopically incoherent) to an active phase (exhibiting spon-
taneous flow).

Active materials are typically encountered in biological
contexts (although nonbiological counterparts may also be
realized, for instance with vibrated granular rods [8]). Ex-
amples include suspensions of bacterial swimmers [1,9,10],
cell extracts [11,12], self-propelled colloidal particles [13],
and cytoskeletal gels interacting with molecular motors, such
as actomyosin solutions or microtubular networks in the
presence of kinesin [14-18]. Activity leads to striking phe-
nomena such as bacterial swarming, cytoplasmic streaming,
and elastotaxis [1]. Furthermore, many biological gels, such
as actin and neurofilament networks, thicken when sheared
[19]. This is the opposite of the typical behavior of viscous
polymeric fluids such as molten plastics, which flow more
easily as shear stress increases. Activity has been suggested
to be amongst the possible causes of this peculiar flow re-
sponse [1,20].

In this paper we present a series of hybrid lattice Boltz-
mann simulations of the hydrodynamic equations of motion
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of an active nematic liquid crystal. Derivations of the con-
tinuum equations we use are given in, e.g., Refs. [1,3,6] and
are not repeated here. However, we are aware of no numeri-
cal studies of the equations (with the exception of our previ-
ous work in [20], which is a short report using a different
algorithm). These are the main focus of our work. Our model
considers a varying order parameter so that defects are auto-
matically incorporated, as is flow-induced or paranematic or-
dering. We show that, in the limit of a uniaxial active liquid
crystal with spatially uniform and temporally constant mag-
nitude of order parameter (we call this limiting case the
“Ericksen-Leslie” model in analogy with the terminology
usually adopted for passive liquid crystals), our model re-
duces to the equations considered in Ref. [7]. We then con-
sider the specific case of a material that is sandwiched be-
tween two infinite parallel planes at which the director field
is anchored along a given direction. We first choose the an-
choring to be along one of the directions in the plane (homo-
geneous anchoring), and we then work out the case in which
there is different (conflicting) anchoring at the two boundary
plates (homogeneous at the top, and homeotropic, i.e., nor-
mal to the surface, at the bottom). When the anchoring is the
same at both boundaries we find that there is a phase transi-
tion [22] between a passive and an active phase when the
“activity” {, a parameter which measures the coupling be-
tween pressure tensor and order parameter (see Sec. II for
details), exceeds in absolute value a finite threshold. For
flow-aligning materials, the transition occurs for sufficiently
extensile rods; for tumbling materials it occurs for suffi-
ciently contractile ones. (Here “extensile” means tending to
propel fluid outwards along the long axis or molecular direc-
tor n, drawing it in radially on the midplane, while “contrac-
tile” means the opposite [1].) Mixed boundary conditions,
instead, lead to a zero activity threshold.
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For homogeneous anchoring, we compare the numerical
phase boundary to the one found in Ref. [7] via a linear
stability analysis, finding a good agreement. However, we
show that the velocity profile found from the stability analy-
sis is itself unstable away from the phase boundary.

We also explore the nature of the solutions of the equa-
tions of motion (director and velocity field profiles) deep in
the active phase, where we find that representative flow-
tumbling and flow-aligning materials behave in a vastly dif-
ferent manner. The former can sustain a quasi-Poiseuille or
banded flow, while spontaneous flow in the latter gets in-
creasingly confined to a region close to the boundaries.

Far from the phase boundary between the active and the
passive phase there is strong hysteresis, with multistable and
history-dependent solutions. These suggest that deep in the
active phase the dynamics might be chaotic. It would be
interesting to further explore the connections between the
active nematic hydrodynamics deep in the active phase and
the rheochaotic behavior, which selected passive liquid crys-
tals display when they are subjected to an external forcing
[24-26]. There may also be qualitative analogies to the
weakly turbulent viscoelastic flow discussed in [27].

Finally, we consider a quasi-two-dimensional (2D) case of
a thin extensile flow-aligning active liquid crystal film,
wrapped on a cylindrical surface (i.e., with periodic bound-
ary conditions). Our simulations show that there are addi-
tional instabilities in this geometry. Spontaneous flow this
time appears as convection rolls, which, deeper in the active
phase, transiently increase in number and eventually split up
leading to a highly distorted flowing director field pattern.

We close this Introduction with some notes on nomencla-
ture and wording. First, an active gel is different from a fluid
which is driven out of equilibrium by an external shear or
heat flow, cases for which there is important and vast litera-
ture (see, e.g., [28,29]). In an active gel the driving is inter-
nal, as, for instance, a bacterium uses up ATP to propel itself.

Secondly, at first glance our system shares some aspects
with fluids which are driven out of equilibrium by a chemical
reaction. There is significant literature on reaction-diffusion
equations which lead to pattern formation [23,30,31]. Ulti-
mately, our systems are chemically driven (e.g., via ATP hy-
drolysis), but they differ from conventional reaction-
diffusion systems in two ways. First, the underlying fluid has
liquid crystalline order even in the passive state. Secondly,
the activity enters the equations of motion through a modifi-
cation of the stress tensor in the Navier-Stokes equations by
a term which is nonpotential (i.e., it cannot be derived on the
basis of any free energy). This makes the equations of active
systems quite distinct from those addressed by reaction-
diffusion models.

II. MODELS AND METHODS

A. Equations of motion

We employ a Landau—de Gennes free energy JF, whose
density we name f, to describe the equilibrium of the active
liquid crystal (LC) in its passive phase (i.e., when the activity
parameters are switched off, see below). This free energy
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density can be written as a sum of two terms. The first is a
bulk contribution,

A Y Agy Agy
fi= 3(’(1 - E)Qiﬁ— =y QasQpQat — (20,

(1)

while the second is a distortion term, which we take in a
(standard) one-constant approximation as [32]

f2=5(0,006 @)

In the equations above, A is a constant, y controls the mag-
nitude of order (it may be viewed as an effective temperature
or concentration for thermotropic and lyotropic liquid crys-
tals, respectively), while K is an elastic constant. f=f,+f, is
a standard free energy density to describe passive nematic
liquid crystals [32]. Here and in what follows Greek indices
denote Cartesian components and summation over repeated
indices is implied.

The anchoring of the director field on the boundary sur-
faces (Fig. 1) to a chosen director 72° is ensured by adding a
surface term

1
f5= 5 Wo(Qup - 00p)° (3)

Q0= So(nony— 8,4/3). (4)

The parameter W, controls the strength of the anchoring,
while S, determines the degree of the surface order. If the
surface order is equal to the bulk order, S, should be taken
equal to g, the order parameter in the bulk (3/2 times the
largest eigenvalue of the Q tensor). W, is large (strong an-
choring) in what follows.

The equation of motion for Q is taken to be [33-35]

(9,+i-V)Q-S(W,Q)=TH+\Q, (5)

where I is a collective rotational diffusion constant, and \ is
an activity parameter of the liquid crystalline gel. The form
of Eq. (5) was suggested on the basis of symmetry in Refs.
[1,3] and derived starting from an underlying microscopic
model in Ref. [6]. The first term on the left-hand side of Eq.
(5) is the material derivative describing the usual time de-
pendence of a quantity advected by a fluid with velocity .
This is generalized for rodlike molecules by a second term

S(W.Q) = (D + )(Q +1/3) + (Q + I/3)(¢D - w)
- 24Q +1/3)Tr(QW) (6)

where Tr denotes the tensorial trace, while D=(W+W7)/2
and w=(W-WT7)/2 are the symmetric part and the antisym-
metric part, respectively, of the velocity gradient tensor
W op=0dptt,. The constant £ depends on the molecular details
of a given liquid crystal. The first term on the right-hand side
of Eq. (5) describes the relaxation of the order parameter
towards the minimum of the free energy. The molecular field
H, which provides the force for this motion, is given by
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FIG. 1. (Color online) Plot of the vy dependence of vg;; panels in (a) and (b) have £=0.7,0.5, respectively. Within each panel different

curves refer to different activity levels \ (see legend). Note that for £€=0.5, flow tumbling (
phase. Points A and B represent numerical examples described below.

SF SF
H=-— +(I/3)Tr—. (7)
8Q 5Q

The fluid velocity i obeys the continuity equation and the
Navier-Stokes equation,

p(&l+ Mﬁaﬁ)ua = &B(Haﬁ) + ﬂ&ﬁ(ﬁaulg‘F (9ﬁua), (8)

where p is the fluid density, 7 is an isotropic viscosity,
I,p=TI05""+ 155", and we have neglected an extra term
proportional to d,ut,, which is zero in the case we are inter-
ested in (incompressible fluids). The stress tensor HZ‘“ESWC
necessary to describe ordinary LC hydrodynamics is

assive 1
H}:;;% == P()‘Saﬁ-" 2§(Qaﬁ+ gﬁaﬁ)Q'yeH'ye

1 1
- gHav(Qyﬁ"' 55%) - §( Qay+ géaV)Hyﬁ

-d 9)
aQ-yV 6{9 Q , N

In Eq. (9) we have defined the symmetric and antisymmetric
part of the passive stress tensor (not including the double
gradient term c?aQwﬁgw) as o,p and 7,p, respectively, for
later convenience. P, is a constant in the simulations re-
ported here. The active term is given by

Z%IVC == {QalBa (10)
where { is a second activity constant [1,7]. Note that with the
sign convention chosen here {>0 corresponds to extensile
rods and {<0 to contractile ones [1]. As for Eq. (5), the
explicit form of the active contribution to the stress tensor
entering Eq. (8) was proposed on the basis of a symmetry
analysis of a fluid of contractile or extensile dipolar objects

vgr| <1) is expected throughout the nematic

in [1]. Tt was also derived by coarse graining a more micro-
scopic model for a solution of actin fibers and myosins in
Ref. [6].

A full understanding of the physical origin (in both bac-
terial suspensions and actomyosin gels) of the phenomeno-
logical couplings ¢ and A, as well as of the range of values
these may attain in physically relevant situations, will require
multiscale modeling at different coarse graining levels, and
more accurate quantitative experiments. These are at the mo-
ment still lacking. However, we already know from experi-
ments and from some more microscopic approaches, that ac-
tomyosin gels are contractile, so that in physiological
conditions those materials should be described by negative
values of { [36]. The term proportional to X has been pro-
posed in Ref. [1] as a symmetry allowed term which, for
dilute bacterial suspensions, should be negative and propor-
tional to the inverse of the time scale for relaxation of
activity-induced ordering. In Ref. [7] it was pointed out that,
instead, A >0 when describing concentrated actomyosin gels
and other systems which display zipping or other self-
alignment effects (this is relevant for the cases considered in
[37D).

It is important to note that the model we have just written
down reduces for A={=0 to the Beris-Edwards model for
LC hydrodynamics. For a sample of uniaxial active LCs with
a spatially uniform degree of orientational order, the director
field (also called polarization field in Refs. [3-5]) 7 is de-
fined through

QaB=q(nanﬁ_ 6aﬁ/3)’ (11)

where ¢ is the degree of ordering in the system (assumed to
be spatially uniform). In this limit our model can be shown
to reduce to the vectorial model considered in [3,5], as will
be shown explicitly in Sec. III.

B. Hybrid lattice Boltzmann algorithm

The differential equations (5) and (8) may both be solved
by using a lattice Boltzmann (LB) algorithm [38], based on
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the three-dimensional lattice Boltzmann algorithm for con-
ventional liquid crystals [40], generalized to include the two
extra active terms, as we discussed in Ref. [20].

Here we use a different route, and solve Eq. (5) via a
finite difference predictor-corrector algorithm, while lattice
Boltzmann is used to solve the Navier-Stokes equation, (8).
With respect to a full LB approach [39,40], the primary ad-
vantage of this method is that it will allow simulations of
larger systems as it involves consistently smaller memory
requirements. Indeed, while in a full LB treatment one has to
store six sets of 15 distribution functions at any lattice point
(if we choose the 3DQ15 velocity vector lattice [38] as we
do here), just one set of distribution functions plus the five
independent components of the Q tensor, is needed in this
hybrid algorithm. Furthermore, we avoid in this way the er-
ror term arising in the Chapman-Enskog expansion used to
connect the LB model to the order parameter evolution equa-
tion in the continuum limit [39].

Lattice Boltzmann algorithms to solve the Navier-Stokes
equations of a simple fluid are defined in terms of a single set
of partial distribution functions, the scalars f;(x), that sum on
each lattice site x to give the density. Each f; is associated
with a lattice vector ¢; [40]. We choose a 15-velocity model
on the cubic lattice with lattice vectors as follows:

¥ =(0,0,0), (12)

&V =(£1,0,0),(0, = 1,0),(0,0, £ 1), (13)

= (x1,+1,£1). (14)

The indices i are ordered so that i=0 corresponds to Ef.o), i

=1,...,6 correspond to the Egl) setand i=7,...,14 to the 552)
set. For our hybrid code, the input to the equilibrium distri-
bution functions has to come from the solution (via finite
difference methods) of the coupled Eq. (5). This differs from
the fully LB treatment of nematics; see Refs. [39,40].
Physical variables are defined as moments of the distribu-

tion functions as follows:
P=zfi’ P”a=2fi€ia- (15)

The distribution functions evolve in a time step At according
to

[ilX+eArr+ Ar) - fix,1) = %[Cﬁ(ﬁ tifi)

+Cpil(X + €An 1 + ArifD].
(16)

This represents free streaming with velocity ¢; followed
by a collision step which allows the distributions to relax
towards equilibrium. The f;k’s are first order approximations
to fix+e;At,t+Ar), and they are obtained by using
A1Cy(x,1,{f}) on the right-hand side of Eq. (16). Discretiz-
ing in this way, which is similar to a predictor-corrector
scheme, has the advantages that lattice viscosity terms are
eliminated to second order and that the stability of the
scheme is improved [39].
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The collision operators are taken to have the form of a
single relaxation time Boltzmann equation, together with a
forcing term

ChEnlfh) =- %f[fi(f, ) - UG LA + PG D).
| (17)

The form of the equations of motion follow from the choice
of the moments of the equilibrium distributions f;? and the
driving terms p;. Moreover, f7/ is constrained by

Eﬁq=P, Eﬁ"eia=pua, Eﬁqeiaeiﬁ=_aaﬁ+puauﬁ’
i i i
(18)

where the zeroth and first moments are chosen to impose
conservation of mass and momentum. The second moment
of f* is determined by o,p, whereas the divergences of 7,4
and of &QQW#ZW enter effectively as a body force.

2P[=0, Epieia= &BTaﬁ
i i

6F )
- /> Epieiaeiﬁzo- (19)
5‘9BQ'}/V i

Conditions (18) and (19) are satisfied by writing the equi-
librium distribution functions and forcing terms as polyno-
mial expansions in the velocity. The coefficients in the ex-
pansion are (in general, nonuniquely) determined by the
requirements that these constraints are fulfilled (see Ref. [40]
for details). The active contributions then simply alter the
constraints on the second moment of the f;’s. (Alternatively,
the derivative of the active term could be entered as a body
force and thus would modify the constraint on the first mo-
ment of the p,’s; we do not pursue this here.)

In Appendix A we give a quantitative comparison be-
tween the hybrid LB algorithm used here and two versions of
a fully LB-based code for active nematics [20]. The hybrid
code is quite satisfactory in performance; it is also easier to
code and runs substantially faster due to the elimination of
the cumbersome additional distribution functions required to
represent the order parameter dynamics within a fully LB-
based approach.

- 8ﬁ<aaQyV

III. MAPPING TO ERICKSEN-LESLIE LEVEL
EQUATIONS

In this section, we consider the limit of the equations of
motion (5) and (8) when the active molecules are uniaxial, so
that the order parameter can be written in the form Qg
=q(n ng—05,p5/3) (n being the usual nematic director field).
We furthermore assume that the magnitude g of the nematic
ordering is independent of space and time. The resulting sim-
plified theory is commonly employed in the physics of active
gels (see, e.g., Refs. [3,5]); using it, some analytical results
have been found. It is thus useful to explicitly consider this
limit (i) to show that our equations map onto those of Refs.
[5,7] for uniaxial systems, and (ii) to quantitatively check our
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numerical results against those found analytically for the
phase boundaries separating the active and passive states [7].
In this section quantities labeled by “EL” refer to the result-
ing director-field model, which is the direct counterpart of
the Ericksen-Leslie theory [32] of passive liquid crystal hy-
drodynamics.

A. Order parameter equation of motion

We first note that the evolution equation (5) of the tensor
order parameter can be written in the usual form for a purely
passive system

(9, +ii-V)Q-S(W,Q) =TH, (20)
so long as we write an effective molecular field
N
H' =H+ FQ. (21)

This implies that the classical linear (in Q) term of the mo-
lecular field, namely,

_AO(1 - ’)//3)Qa,8’ (22)

is now effectively replaced by

(‘Ao(l —y3)+ %)Qaﬁ. (23)

In this manner the “equilibrium” properties of active nemat-
ics can be said to differ from the passive ones because of the
presence of the active parameter A. (This contrasts with the
role of £, which has no equilibrium counterpart. We will see
below, moreover, that the shift created by N has no dynami-
cal consequences in systems where the ordering strength ¢ is
fixed.)

After some straightforward algebra (see, e.g., [33], and
references therein), one finds that the linear term now
changes sign for y=1v", with

y*:3<1-FLAO). (24)

Similarly, the transition point y=vy,. for the first-order
isotropic-to-nematic transition obeys

27 I A
N =—\1=-F—|=70)1-=—1. 25

7 10( er> vl )( er> 23
Furthermore, for uniaxial nematics with a spatially uniform
degree of ordering ¢ (as assumed at the Ericksen-Leslie
level—see above), the solution for ¢ becomes

n=ti34)1-38
TV=4"y

8§ N

—+— . 26
3y 3ylAg (26)

(Note that this is 3/2 times the largest eigenvalue of the Q
tensor.)

The conventional passive case is recovered by setting A\
=0 in Egs. (23)-(26). Note that the value of ¢ at the transi-
tion g.=1/3 is independent of \ since it is insensitive to the
quadratic term of the free energy density. However, the con-
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dition for real solutions (positivity of the term inside the
square root) for active nematics is shifted by nonzero \ and

becomes
8 A
r= 3(1 FA())' @7
The dynamics of the director field in a uniaxial active
liquid crystal of fixed ¢ is controlled by three parameters.
These are <y, the liquid crystal rotational viscosity; vg;,
which is another viscosity determining whether the liquid
crystal (in its passive phase) is flow aligning or flow tum-
bling (for |vg;| larger and smaller than 1, respectively); and
Ngr, which determines the magnitude of activity-induced or-
dering. It is possible to map the dynamical equation of mo-
tion for O,z (20) onto the model considered in Ref. [7] (the
details are worked out in Appendix B), which leads to the
following identifications:

2

2q
=y, =—, 28
YEL=V1 T (28)
(g+2)¢
VEL=E=— 1 > (29)
Y1 3q
)\EL=0. (30)

These relations show that in our model the dynamics of the
tensorial order parameter may be controlled by tuning & and
I'. Furthermore, we note that our parameter X does not con-
trol \g; directly, because in Ref. [7] this parameter can al-
ready be adsorbed into a Lagrange multiplier introduced to
maintain fixed ¢. (To emphasize this, we set it to zero above;
see also Appendix B.) However, changing \ in our equations
does alter g, so qualitatively the meaning of this parameter is
similar to that of Ag, in [7] insofar as it determines the
strength of activity-induced self-alignment effects. The rela-
tions (28) and (29), give rise to a nontrivial dependence of
the parameter vz on 7y and & as shown in Fig. 1.

B. Navier-Stokes equation

We now map out the parameters entering the Navier-
Stokes equation (8) onto the analogous equation derived at
the director-field level in Ref. [7], which is written in terms
of the “vectorial” molecular field /, and of the director field
n,. In Ref. [7], the velocity field at steady state of an active
gel is determined by vg; (see Sec. III C), 7, which is an
isotropic viscosity similar to the one introduced in Eq. (8),
and {z;, which controls the hydrodynamics in the active
phase, determining whether the active liquid crystal is exten-
sile or contractile as discussed in Sec. II. (Note that {z; con-
trols the effect of activity on the Navier-Stokes sector, but
does not enter directly the order parameter dynamics as set
up in Sec. III C.)

After some algebra (the details of which are worked out in
Appendix B), we can rewrite Eq. (8) in the required limit of
uniaxiality and fixed g. We find that the six Leslie viscosities
for a purely passive liquid crystal (\=¢=0), which are usu-
ally called «; ¢ [32], are
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2
a;=- 3—Fq2(3 +4q - 44, (31)
11 ,
®=7 —5d2+®§—q , (32)
11 ,
%=r —gq(2+q)§+q , (33)
4 222
a4=9_F(I_Q)§+7]7 (34)
1
as=- gl - )& +q2+q)él, (35)
1
%=EFMM—@§—QQ+wﬂ. (36)
The Parodi relations,
2 2
a3—a2=%=yl, (37)
2 2
aﬁ—asz—gcﬁ(%) =, (38)
)+ a3 = ag— as, (39)

are easily seen to hold. The Ericksen-Leslie level viscosity
and active stress term are recovered as
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FIG. 2. Phase boundary for L=49 in the (\,{) plane for y

=3.0, 74=1, and {=0.7. Four points found numerically from our
HLB simulations are also shown (filled circles).

2
=p+—(qg-1)72&, 40
NeL="m+ 9F(‘1 )€ (40)

er=14q. (41)

Using the above relations and the results of Ref. [7], and
fixing p=2, we obtain the phase boundary in the (£,\) plane,
for an active nematic confined between parallel plates at
separation L, with homogeneous anchoring at the walls (Fig.
3) as follows:

L

From Eq. (42) it is apparent that the critical activity threshold
beyond which spontaneous flow is found scales like L2, and
thus vanishes for an infinite system. Note that the depen-
dence on \ of the phase boundary is indirect, via g. Figure 2
shows an example of comparison between analytical and
simulated phase boundary, from which it is apparent that
there is a good agreement.

IV. RESULTS

Most of the results, which we present below, refer to a
quasi-1D system in which the active nematic is sandwiched
between two plates at separation L in the z direction, with
translational invariance assumed in x and y (Fig. 3). We con-
sider two different boundary conditions: either homogeneous
anchoring along the y direction, or mixed (conflicting) an-
choring at the two plates. We will also refer to the angle

, 12mK(1277 = 547 = 148q + £+ 47+ 48 + 484 +947)
- 9(éq +2¢-3q) '

(42)

between the director field and the positive y direction as the
polarization angle 6, the convention being that §>0 if the
positive y axis can be superimposed with the director field
with an anticlockwise rotation of an angle |6| (which is de-
fined to be smaller than ), around the x axis.

A. Spontaneous flow transition in Freedericksz cells

We first consider homogeneous anchoring where the po-
larization at the confining surface is parallel to the y direction
0=0. (This geometry is known as the Freedericksz cell in
passive liquid crystal device terminology, [32].) By consid-
ering Eq. (26) we see that the order parameter ¢ remains
between 0 and 1 for small values of \. Furthermore, we note
that for §=0.7 and £=0.5 the system is, respectively, in the
flow-aligning regime (point A in Fig. 1) and in the flow-
tumbling regime (point B). Let us first concentrate on the
flow-aligning regime (point A). For definiteness we now fix
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(a) (b)
e
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FIG. 3. Geometry used for the calculations described in the text.
The active gel is sandwiched between two infinite plates, parallel to
the xy plane, lying at z=0 and z=_L. We consider (a) normal anchor-
ing and (b) conflicting anchoring. (The latter would correspond to a
hybrid aligned nematic (HAN) cell for a passive liquid crystal
material.)

A=0, 7,=2.5, Ap=0.1, K=0.04, ' ~0.34, and y=3, while §
can take on the discrete values 0.5,0.7 as just described, and
L and { are variable. Note that, as described previously, set-
ting A=0 eliminates the shift in g arising from self-alignment
but this term can anyway be adsorbed into an effective (qua-
sipassive) free energy. Accordingly, the important activity
parameter, for our purposes, is simply {.

1. Flow-aligning regime

For £=0.7, the system is flow aligning and, for instance
with {=0.005, the active LC is extensile. In Fig. 4 we show
the time evolution of the components ny,n, of the polariza-
tion vector at the center of a system of size L=100 lattice
units (n, is identically zero in this case). The polarization
field was inizialized along the y direction except for the mid-
point director field, which was initialized with 6=10°. As
one can see for 1>¢"~ 10> time steps, the system undergoes
a transition to an active state, characterized by a spontaneous
flow.

This happens when the scaling variable /L?> becomes
larger than the critical value found through the solution of
Eq. (42). Thus there are two ways of entering the active
phase: either by increasing the value of { at fixed L, or by

220 | | | |
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FIG. 4. (Color online) Time evolution of the components of the
polarization field n, (upper) and n, (lower), at z=L/4. Parameters
are L=100, {=0.005, A=0, y=3, Tf=2.5, and £=0.7 (flow aligning
regime). At the bounding plates, the field is strongly anchored along
the y direction (homogeneous anchoring).

increasing the system size at fixed activity. In Figs. 5 and 6
we explore the system behavior (respectively, director and
flow field at steady state) when the active phase is entered
via an increase in the activity parameter ¢.

By means of a stability analysis, valid very close to the
phase boundary, an analytic expression for uy(z) was found
in [7]. This predicts a sinusoidal modulation with a node at
the center of the channel. While our numerics show this so-
lution to be metastable for a long time close to the threshold,
the eventual steady state we find is a quasi-Poiseuille flow
with a maximum flow velocity, not a nodal point, at the
center of the channel (Fig. 5). Thus with homogeneous
boundary conditions and assumed translational invariance
along the flow direction, we obtain a spontaneous net mass
flux rather than the balancing fluxes of forward and back-
ward fluid in the two halves of the cell, suggested by the
analysis of [7]. Our numerical simulations thus suggest that
the perturbative solution is stable at most within a very nar-
row region close to the phase boundary. The overall mass

FIG. 5. (Color online) Profiles of director orientation angle (a) and velocity field [(b) in lattice units] at steady state for different values
of £ in a flow-aligning active liquid crystal sample with L=100 (other parameters as specified in the text). Solid, dashed, and dot-dashed
curves correspond to {=0.003, 0.005, 0.01, respectively. The transition to the active phase occurs at {=¢.=0.002. The flow is bistable:
reversing the sign of 6 and u, together creates an alternative steady-state solution.
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FIG. 6. (Color online) Profiles of director orientation (a) and velocity field [(b) in lattice units] at steady state for different values of £ in
a flow-aligning active liquid crystal sample with L=100 (other parameters as specified in the text). Solid, dashed, and dot-dashed curves
correspond to {=0.02, 0.04, 0.08, respectively. All solutions are bistable (see text).

flux is set in a direction chosen by spontaneous symmetry
breaking or, in practice, small deviations from symmetry be-
tween y and —y in the initial condition. Note that for a fixed
initial condition as selected above, the flow direction can
also switch on variation in {: to ease comparisons, some such
switches are silently reversed in the figures presented here
and below.

Upon increasing the value of (L? (i.e., moving deeper
inside the active phase) the flow pattern changes from quasi-
Poiseuille flow to a “banded” flow, with regions of rather
well defined and distinct local shear rates (Fig. 6). These
bands [which are clearer and more numerous in larger
samples (see Fig. 7)] correspond to regions of aligned liquid
crystal, which are separated by sharp interfaces. As the equa-
tions deep in the active phase are strongly nonlinear, no ana-
lytical results so far exist to probe the behavior of an active
gel in this regime. The utility of a robust numerical algo-
rithm, as we have developed here with our HLB code, is
highly apparent when addressing the potentially complex be-
havior in such regimes. The model we consider allows for a

20 T T

220 | | | |

nonconstant value of the order parameter ¢ and we can thus
quantify the variations in ¢ that are neglected in a director-
field model. Variations in g are at most of 1-5 % in the
simulations reported above, and small dips in the order pa-
rameter correspond to the spatially rapidly varying regions in
the director field profile (i.e., in the “kinks” which appear at
the band edges). Furthermore, these small changes are only
encountered far from the phase boundary.

2. Flow-tumbling regime

‘We now turn our attention to the flow-tumbling regime by
considering £€=0.5, y=3, and A=0. In this case Eq. (42) sug-
gests that, in order to have a spontaneous flow, ¢ must be
negative (i.e., the LC has to be contractile). This is confirmed
by our simulations. We consider the value {=—0.0025, which
is just in the active phase [see Eq. (42)]. In Figure 8 we show
the time evolution of the components ny,n, of the polariza-
tion vector at the center of a system of size L=100, initial-
ized as for the flow aligning case. As in the flow-aligning
case, for t>1" the system undergoes a spontaneous align-

(b)

! ! ! \
0 0.2 0.4 0.6 0.8 1
z/L

FIG. 7. (Color online) Profiles of director orientation (a) and velocity field [(b) in lattice units] at steady state for different values of ¢ in
a flow-aligning active liquid crystal sample with L=400 (other parameters as specified in the text). Solid, dashed, dot-dashed, and dotted

lines correspond to {=0.001, 0.002, 0.003, 0.01, respectively.
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FIG. 8. (Color online) Time evolution of the components of the
polarization field at z=L/2 for the flow tumbling case (£=0.5).
Solid (black) and dashed (red) lines refer to n, and n_ respectively.
Other parameters are L=100, {=-0.0025, A=0, Ay=0.1, and K
=0.04; the transition as predicted by Eq. (42) is at {={ =
—0.0022. The director field is strongly anchored along the y direc-
tion (homogeneous anchoring).

ment with a consequent spontaneous flow. The time behavior
is, however, quite different from the one observed in the flow
aligning case. In particular, at t=¢" the polarization vector
has an abrupt variation of 7/2 and then reaches a stationary
value with a polarization angle, which strongly deviates from
the starting configuration.

As with the flow-aligning case, we can estimate the criti-
cal value ¢, at fixed L (or L, at a given {) above which the
system starts to display spontaneous flow in steady state.
Again as in the flow-aligning case we find good agreement
between the value of the threshold estimated numerically and
the analytical prediction of Eq. (42). However, a comparison
between the stationary profile of velocity and polarization
angle profile in the flow-aligning regime and in the flow-
tumbling one (Figs. 5 and 9, respectively) shows a striking
difference. While the velocity profile has the shape of a spon-
taneous Poiseuille flow for a flow-aligning active liquid crys-
tal, it is zero in the center of the channel and confined to the
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boundaries in the flow-tumbling case. Also the polarization
angle is quite different: in the flow-aligning case the director
field splays and bends so that the polarization angle ap-
proaches the Leslie values (selected by the local shear),
while it is almost constant throughout the sample in the flow-
tumbling case.

Upon moving deeper inside the active phase, first the ve-
locity field becomes confined more and more to the bound-
aries, while the polarization angle becomes increasingly
close to 90° throughout (Fig. 9). For still larger values of the
activity parameter { (Fig. 10), the flow changes sign, passing
through an intermediate state with pluglike flow in which the
polarization has the shape of a kink (notice, however, that
6=+90° are equivalent due to the head-tail symmetry of the
director field). As in the flow-aligning case, order parameter
variations are limited for £ just larger (in absolute value) than
the critical value. For the simulations presented here and
deep in the active phase, the order parameter shows some
drops (similar in magnitude to those found with flow-
aligning materials) close to the boundary plates, where the
shear rates are maximal.

3. Multistability in the active phase

It is important to consider whether the solutions we have
found are unique (modulo the trivial bistability associated
with sign-reversal, discussed above), or whether each of
them is one of many possible solutions of the equations of
motion with given anchoring conditions at the boundary. The
selection between such solutions, if they exist, is presumably
governed by the initial conditions. We focus here, for defi-
niteness, on the case of contractile active tumbling liquid
crystals.

Figures 11 and 12 show the results of two different initial
conditions on the steady-state director and velocity profiles.
Figure 11 shows data for a modest value of the activity
(~50% larger in absolute value than the critical value to
enter the active phase). It can be seen that one of the solu-
tions has a nonzero component of the director field along the
x direction, so that the director tilts out of the “shear plane”
(the yz plane in Fig. 3). Figure 12 shows another example,

(b)

0.002— ‘

0.001 J

-0.001

. | | | | -
0'0020 0.2 0.4 0.6 0.8 1

z/L

FIG. 9. (Color online) Polarization angle (a) and velocity field (b) profiles for flow-tumbling active liquid crystals, with {=-0.003 (solid
black line), —0.004 (dashed red line), —0.005 (dot-dashed green line), and —0.006 (dotted blue line). The transition between the passive and

the active phase is attained at {={,=-0.002 [see also Eq. (42)].
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FIG. 10. (Color online) Polarization angle (a) and velocity (b) profiles for flow-tumbling active liquid crystals deep in the active phase.
Curves correspond to {=-0.008 (solid black line), —0.01 (dashed red line), —0.02 (dot-dashed green line), and —0.03 (dotted blue line).

deeper in the active phase, in which the polarization profiles
again differ in steady state for the two different initial con-
ditions. One of these initial conditions is the same as above;
for the other we started the director field along the z direction
apart from (the boundary and) the midplane in which the
polarization angle was tilted.

Extensile aligning liquid crystals behave in a similar way.
As a rule of thumb, multistability appears to increase for
intermediate values of the activity. For the cases considered
here, we only find a single (bistable) solution in the active
phase close to the phase boundary and again for very large
activity. It should be noted that also passive liquid crystals
can have metastable multiple solution in equilibrium (for in-
stance, super-twisted structure are metastable). However, in
that case (in the presence of thermal noise, and in the ab-
sence of external driving) one can speak of a “most stable
solution,” which is unambiguously determined by free en-
ergy minimization. No such criterion exists for our nonequi-
librium problem, as the equations of motion cannot be writ-
ten down completely in terms of a free energy. (Note
however that, were {=0, this could be done even in the pres-
ence of the active self-alignment term \.)

B. Spontaneous flow in hybrid aligned nematic cells

Now we consider a hybrid-aligned nematic cell (HAN
cell, in passive liquid crystal terminology [41]), in which the
polarization vector is anchored homogeneously at z=0 and
homeotropically at z=L. We restrict attention to £=0.7, the
flow-aligning case.

Unlike the Freedericksz cell, the conflicting anchoring
now leads to an elastic distortion in equilibrium even within
the passive phase of the active system (as it would in a
strictly passive nematic). As a result any nonzero value of ¢,
whether positive or negative, leads to spontaneous flow in
steady state, as the active pressure tensor is no longer
divergence-free when {# 0. Thus even contractile aligning
liquid crystals flow spontaneously in this geometry (Fig. 13).
The velocity profiles in steady state in this case show ex-
tended regions with very low shear rate and pluglike flow,
coexisting with strongly sheared “boundary layers.” This is

similar to what was observed in Sec. IV A 1 for contractile
(tumbling) liquid crystals in a Freedericksz cell geometry.
The region of the cell in which the director field is close to
homeotropic anchoring (6=0) increases with |].

The behavior of extensile aligning materials in a HAN
geometry is reported in Figs. 14 and 15 for smaller and larger
values of ¢, respectively. The spontaneous flow is asymmet-
ric. Initially there are oppositely flowing slabs of liquid crys-
tals, which distort the director field by creating homog-
enously aligned regions separated by thin regions of
homeotropic ordering. These profiles are then supplanted by
an asymmetric quasi-Poiseuille flow, which resembles the
response of a purely passive HAN cell to a pressure differ-
ence driven flow [41]. At larger values of { the director pro-
file throughout is close to the one obtained for a Freedericksz
cell, with only a highly distorted boundary layer to satisfy
the homeotropic anchoring at the top plane (z=L).

C. Spontaneous flow in two dimensions

Thus far, all simulations reported here were performed in
a quasi-1D geometry, where translational invariance is as-
sumed along x and y. The same simplification is often em-
ployed in numerical studies of passive liquid crystals (see
many examples in Ref. [32], as well as, e.g., Refs. [25,41]
for rheological studies); moreover, as shown above they al-
lowed us to check detailed analytical predictions (calculated
at director-field or EL level) in exactly this geometry [7]. It is
clearly important and interesting to consider whether there
are additional spontaneous flow instabilities in a higher di-
mensionality. With periodic boundary conditions such insta-
bilities must spontaneously break the translational invariance
in x and y; we limit our attention to this case, but note that
confining cell walls might also play an important role.

We next present 2D simulations (L,=100, L,=100, L,
=0) in which we again have two parallel plates, normal to z;
translational invariance along x is maintained but periodic
boundary conditions are used to allow breakdown of this
along the flow direction y. We initialized the simulation with
the director field along the y direction except for points along
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FIG. 11. (Color online) Profiles of director orientation (a) and velocity (b) for two different steady-state solutions found for contractile
tumbling liquid crystals in the active phase ({=-0.003) in the geometry of Fig. 3(a), starting with two different initial conditions. In (a) the
solid and the dot-dashed line refer to the two different polarization angles, while the long dashed line refers to the ¢ angle between the
projection of the director angle onto the xy plane and the positive x axis. (this corresponds to the case when the polarization angle is given

by the dashed red line). Initial conditions are given in the text.

the midplane z=L/2, in which there was an alternating tilt of
+10° in stripes (the width of the initial stripes did not affect
the steady state reached at the end of the simulations).

Figure 16 shows results for a moderate value of the activ-
ity parameter ¢ (0.001), for which the liquid crystal enters
the spontaneously flowing active phase. Spontaneous flow
appears as a pair of convection rolls, which lead to a splay-
bend in-plane deformation of the director-field profile. The
order parameter is to a good approximation constant (g
=(.5) throughout the sample. The threshold at which the
spontaneous flow appears is smaller than the one found in
the quasi-1D simulation [for which with the same parameters
£,=0.002 (see above)]. This is due to the fact that along y
effectively homeotropic anchoring conditions are seen, and
the active phase is entered for a smaller value of { in this
geometry. Note that, since at the onset of the convection rolls
there are exactly two of these in the periodic cell, the details
of the transition may now depend sensitively on the aspect
ratio of the cell.
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As we go deeper into the active phase, the number of
convection rolls is, at early times in the simulations, larger
[Figs. 17(al) and 17(b1)]. These convection rolls then split
up, and the flow field acquires an out-of-plane component
(i.e., there is flow along the x direction). After this happens,
a number of vortices form, which lead to a complicated flow
which is accompanied by the formation of defects (of topo-
logical strength +1/2) in the director field profile. The simu-
lation, followed in Fig. 17, does not lead to a steady state. It
would seem plausible that the corresponding trajectories in
phase space may be chaotic, but we have not attempted to
test this directly. Moreover, once a nonzero x velocity has
been acquired, there is a strong possibility of breakdown of
translational invariance in x; to explore this would require
fully 3D simulations. Note, however, that in this regime the
structural length scale of the flow appears small on the scale
of the simulation cell and therefore might cease to be sensi-
tive to its shape.
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FIG. 12. (Color online) Profiles of director orientation (a) and velocity (b) for two different steady-state solutions found for contractile
tumbling liquid crystals in the active phase ({=—0.006) in the geometry of Fig. 3(a). Initial conditions are given in the text.
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(b)
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FIG. 13. (Color online) Profiles of director orientation (a) and velocity (b) for flow-aligning contractile active liquid crystals in a HAN
geometry. Curves correspond to {=—0.001 (solid black line), —0.0005 (dashed red line), and —0.003 (dot-dashed blue line).

V. DISCUSSION AND CONCLUSIONS

We have presented a hybrid lattice Boltzmann algorithm
to solve the equations of motion of an active nematic liquid
crystal. In our equations the orientational degrees of freedom
are characterized by a tensorial order parameter. This renders
our algorithm general enough to deal—in principle—with
nonhomogeneous, flow-induced or paranematic ordering, as
well as with topological defects. The model we analyze is
equivalent to the one proposed in Ref. [1].

Our main results are the following. First, we have explic-
itly mapped our model onto the one considered in Ref. [7] in
the limiting case of a uniaxial liquid crystal with a spatially
uniform and time independent magnitude of ordering. This is
useful when comparing the different approaches which are
now being proposed to study the physics of active materials.

Second, we found a spontaneously flowing phase (active
phase) for a wide range of values for the activity parameter {
in a quasi-1D geometry where the director field is con-
strained to lie along a common direction along both confin-
ing plates. (A second activity parameter A merely renormal-
izes the equilibrium parameters of the passive material.) Our

T
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simulations confirm the location of the phase transition from
passive to active phase found via a linear stability analysis in
Ref. [7], but show that, for a wide range of parameters within
the active phase, even very close to the boundary, the spon-
taneous flow profile has a quite different symmetry from the
one predicted by that analysis. Instead of a sinusoidal flow
with a node at the midplane, flow-aligning and flow-
tumbling liquid crystals display a quasi-Poiseuille flow and a
“boundary layer”-type flow, respectively. (Both flow profiles
are bistable.)

Our numerical method can readily probe, for the first
time, the hydrodynamic behavior of active materials deep in
the active phase, where we gave evidence of a spontaneously
banded flow for the flow-aligning case. Far from the phase
boundary, there are multiple (initial condition dependent) so-
lutions, and the system displays hysteresis.

Third, if conflicting (HAN-type) anchoring conditions are
applied at the confining plates, spontaneous flow occurs for
any values of the activity parameter ¢, however small. Fi-
nally, we performed two-dimensional simulations, with peri-
odic boundary conditions along the y direction and planar
anchoring along that direction on both confining plates.

(b)
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FIG. 14. (Color online) Profiles of director orientation (a) and velocity [(b), lattice units] for flow-aligning extensile active liquid crystals
in a HAN geometry. Curves correspond to {=0.002 (solid black line), 0.0005 (dashed red line), 0.001 (dot-dashed green line), and 0.002

(dotted blue line).
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FIG. 15. (Color online) Profiles for director orientation (a) and velocity [(b), in lattice units] for flow-aligning extensile active liquid
crystals in a HAN geometry. Curves correspond to {=0.01 (solid black line), 0.02 (dashed red line), and 0.04 (dot-dashed green and blue

line).

These suggest that there are additional instabilities in a
quasi-2D geometry. Moreover, at high activity levels, there
can also be a spontaneous flow also in the x direction in this
geometry.

These results demonstrate a remarkable richness in the
steady-state hydrodynamic behavior of active nematic mate-
rials, even in the absence of external drive such as an im-
posed shear flow. (As such, they have no counterpart in the
physics of passive nematics.) Our hybrid lattice Boltzmann
methodology, which combines LB for momentum with finite
difference methods for the order parameter tensor Q ., offers
a robust and efficient method for probing these effects. It can
equally well handle transient phenomena, some of which we
explored above, and can readily be modified to allow for
imposed flow.

Our algorithm can be generalized in several ways. For
instance, an additional order parameter equation, describing
the time evolution of a polar vector field, can be considered
with little more effort. This would allow a full 2D study of
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polar active nematics [6] with a variable degree of ordering.
Similarly, chiral active liquid crystals can be straightfor-
wardly treated [42], for instance to model concentrated acto-
myosin solutions. Actin fibers in very concentrated solutions
undergo a nematic to cholesteric transition; another candi-
date for an active chiral liquid crystal might be a solution of
DNA fragments interacting with polymerases or other motors
[12]. Also, it would be of interest to use the present algo-
rithm to characterize the rheological properties and map out
the flow curves of an active liquid crystal under imposed
shear. We shall report on such work in future publications.
We also hope to report soon on fully three-dimensional simu-
lations of active materials, along the lines pioneered for pas-
sive nematics in [40].
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FIG. 16. Maps of velocity field (a) and director field (b) in steady state for an active aligning liquid crystal with {=0.001 (extensile),

simulated on a two-dimensional L=100X L=100 grid.
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The agreement proves the validity of our hybrid approach.
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FIG. 17. Maps of velocity field [(al)—(a3)] and director field [(b1)—(b3)] for an active aligning liquid crystal with ¢

In Fig. 18 we show the director and velocity dynamics at
L/4 (in the geometry of Fig. 3) and in the midplane, re-

simulated on a two-dimensional L

Boltzmann steps, respectively.
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FIG. 18. (Color online) Time evolution of Q,, at z=L/4 (a) and of , in the midplane (b), as predicted by our hybrid LB treatment (solid
black lines), and by two types of full LB treatment (dashed red lines, with the double gradient terms entered in the first moment constraint,
to avoid spurious velocities at equilibrium; and dot-dashed blue lines, with the double gradient term entered in the second moment

constraint).

Note that two full LB algorithms are benchmarked against
the hybrid code. In one case the double gradient term is
entered as a constraint in the second moment; in the other its
derivative is entered as a body force [this second procedure
guarantees that no spurious velocities are found in steady
state (see, e.g., Ref. [43])]. It can be seen that the LB treat-
ment with the double gradient terms entered in the second
moment constraint leads to a small deviation at intermediate
times. This we interpret as a discretization error, as this
method in 2D is known (for conventional, i.e., passive liquid
crystals) to lead to discretization errors causing small spuri-
ous velocities even in the steady state [43].

APPENDIX B: “ERICKSEN-LESLIE” LIMIT OF THE
ORDER PARAMETER EVOLUTION EQUATION

In this Appendix we map the order parameter evolution
equation used in this work [Eq. (5)], onto the analogous
equation used in Ref. [7], by taking the limit of a uniaxial
liquid crystal with spatially uniform and temporally constant
magnitude of ordering ¢. In this way we will recover Eqgs.
(28) and (29).

To this end let us first write the Q evolution equation (5)
for H. This gives, formally,

TH=(J,+u-V)Q-S(W,Q)-\Q. (B1)

By considering the uniaxial expression for Q [see Eq. (11)]
we obtain

THg, = (d,q)ngn, — é%&,q + (uydyg)ngn,, - ffﬂ(uyayq) S5
+q(dngn, +qngdn,) + qu,dpnghn,
+qnglu,dn,) —Ngngn, + )\qég’f + %g(q - 1)Dg,
= &q(Dgyny, + ngnyDy,) = q( Qg —ngnfdy,)

2
+2géngn, Tr(QW) - gf(q - DTr(QW)dg,. (B2)

As can be easily checked, one can substitute W with D in
Eq. (B2). As we have assumed that ¢ does not depend on ¢
and 7, we obtain

THp,=q(nNg+ngN,) = q&Dgpp, +ngn,Dy,)

) 2
- )\q(nﬁnﬂ— —f’i) + g(q - 1)éDg,

2
+2q°en gDyt + 20(1 = 805,00y,
(B3)
where N s N, are corotational derivatives defined as

Np=dinp+u,dyng=Qpyy=dng+udyg=(w X n)g,
(B4)

and w=V Xu/2. In order to write the evolution equation
(B3) in a form that resembles the one introduced in [7] we
note first that, by the chain rule,

w0 9w

Ton,  8Q. ny,
=q(ngHpg, +n.H,,) =2q(ngHg,).

If we now multiply (on the left) both members of Eq. (B3)
by ng and we use the constraint ngng=1 we obtain after
some algebra,

= Haﬁq(nﬁﬁa# + nadg,u)

(B5)

1 2
Ih,/2q=gN, - g(q+2)§'nwa— gkqnﬂ, (B6)

where we have omitted terms O(n?). Clearly, if A=0, Eq.
(B6) reduces to the usual Ericksen-Leslie equation for the
director field, namely [32],

h,u,: 71Nlj,+ YZnQDa/u (B7)
where
2q2
=—, B8
Y T (B8)
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24 4+ 2)e. (B9)

Y2=- ar

If, on the other hand, the active term A # 0 we have

(g+2)
q

r

1
NM:Z_qth g

&D,,. (B10)

Note that terms proportional to n,, drop out of the equations
in this mapping. Indeed they contribute a component of the
molecular field parallel to n s which would tend to increase
the magnitude of the director field g. This is prevented by the
Lagrange multiplier, which appears in the vectorial
“Ericksen-Leslie” model (to maintain constant g). As a result
such terms simply change the relationship between the
Lagrange multiplier and the magnitude of order and not the
structure of the director-field equation. By comparing Eq.
(B10) with Eq. (3) of [7] (there Dn,,/Dt=N,) we then obtain
the relations listed in Egs. (28) and (29) in the text.

APPENDIX C: “ERICKSEN-LESLIE” LIMIT OF THE
NAVIER-STOKES EQUATION

In this Appendix we work out the details of the mapping
between the Navier-Stokes equation in our tensorial model in
the uniaxial limit of constant g, and the momentum balance
equation used in the “Ericksen-Leslie” version of Ref. [7],
which was reported in Sec. III B in the text. To this end, we
need to write the total stress tensor I1,5= H’;‘E”v"+ H”C"W in
terms of the molecular and director fields, /2, and n,, respec-
tively, which are used in director—ﬁeld—based models. As in
Appendix B we write Q.5 in uniaxial form, i.e., Q=g(P
-1/3), where P,z=n,ng. Note that P*=P and Tr(P)=1 and
recall that the Ericksen-Leslie expression for the total stress
is

L _
O'Eaﬁ— angngn n,D .+ auDop+ asngn,D .

+ aanNa+ agnaNB (Cl)

+ agngn,D g

We first consider the antisymmetric part of the passive stress
tensor in the tensorial model, namely,

TaB=Q'H_H'Q=

Multiplying to the left the expression (B3) for H,, by P,,
=ngn, and to the right by nng, gives, after some algebra

gP-H-H-P). (C2)

I7ap= gL (nanyHyp = Hayynp)

= |:q2(anB_Nan,8) - %(6] + 2)(nan"yDyB

—Dayn)nﬁ):|. (C3)

Equation (C3) may now be compared to the antisymmetric
part of Eq. (C2), to give

G-m=—=7, (C4)
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2
- ——qé(“ >=72, (C5)

where the equalities with vy;,y, come from a comparison
with Eq. (B9). We may slightly rewrite the antisymmetric
term (C3) in a form that is closer to the one used in [7]. This
can be done by substituting the expression for N,, written in
terms of the molecular field

h, v
N,=—+%—-"=n,D, (C6)
o a

into Eq. (C3). This gives
2

q V2
FTaB = ;(nahﬁ - hanﬁ) + qzz(nt)’Do’anﬁ - nana"DU'ﬁ)

24+ D01 Do D). ©)

Hence the expression for 7,4 simplifies to

q
’TaB: F—%(nahﬁ—hanﬂ), (CS)

which is the antisymmetric term in the director-field treat-
ment of Ref. [7] (see Eq. (2) of [7]).

We now turn to the symmetric part of the total stress
tensor (excluding the active contribution and the double gra-
dient term)

1
Oap="— P05aﬁ+ 25( Qaﬁ+ §5a,8)deHye_ gHozy

1
X (Q),B+ 5%) - §(Qay+ 3 %)Hyﬁ. (C9)

The active contribution is

TE = — gnong+ gg Bug (C10)

Note that the double gradient term =340 (sz is analogous
to the director-field term —d n, 5> — 53/,;1 , which is not included in
Eq. (C2), hence not considered hereafter.

By using Eq. (B3) for H, after some algebra, one obtains
the complete expression for o,z as

2

qé £q
Oup== 3@+ 2)(1pNat nNp) + 22 (4= @) Dayryrg

4 2
. -1 2 2D = 28 4 2_4
+nanyDy,g)+9F(q )7EDop+ ar? &g -4q
g€
=3)ngngD, .+ R (4-79-84"

+84°) OupD 1,1,

The first term of the right-hand side of the equation above
can be usefully rewritten (for comparison with the equation
in [7]) by using Eq. (C6) to write N, in terms of /,,.
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—qé/3(q+2)(ngNy+nyNp)
h h
=—q&3(q+ 2)(n3—a - nﬁﬁnUDm + na—é
" " Y1
ﬁ VELF
—ngy n(TDlTﬁ = (tha + nahﬂ)
"1 2
r
= V2 D+ ety Do), (C11)

where in the last line we have used Eq. (29).
The Navier-Stokes equation in the Stokes regime is

ﬂﬁﬁ(ﬂauﬁ+ ﬁﬁua) =2{9,377Daﬁ=_ &B(Haﬁ) (CIZ)
—I1,4 can equivalently be rewritten as

v &
— HOK,B: — %(”Bha'*' nahﬁ) + Eq(q - 4)(Dm7n(7n,3

4 2
282 282 2
+ 11D gp) — —9F(q— 176D 5~ ir? &(4q -4q

&
=3)ngngD, nn,~ ?(4 -7q-84>
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K

- h
b F?’l(na b

q
+ 86]3) 6CYBD'yVnVn}/+ gqnanﬁ_ ggaa

— hony). (C13)

If \=¢=0, i.e., for passive liquid crystals, Eq. (C11) gives
the symmetric part of the Beris-Edwards stress (ignoring the
distortion stress) and this, together with Eq. (C3), gives the
Leslie coefficients which are listed in Sec. III B [Egs.
(3)-(36)].

In Eq. (C13) the term proportional to D,z may be added
to the left-hand side of Eq. (C12) to renormalize the apparent
viscosity, while the rest of it may be rewritten as

2

v &
- %(ngha +n10hg) + 3140 = D Dagh g+ natDg)
2

2 43
_ 3—Fq2§2(4q2 —4q = 3)nngD nn,~ ?(4 ~7q -84

q 1
+ qu) 5&BDyanny+ gqnanﬁ - gg 5(15 - E(nahﬁ - hanﬁ)’

(C14)

where for the last term we have used relation (B9). By com-
paring our equation with the one in [7] we then get Egs. (40)
and (29) in the text.
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